If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-15y+52=0
a = 1; b = -15; c = +52;
Δ = b2-4ac
Δ = -152-4·1·52
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{17}}{2*1}=\frac{15-\sqrt{17}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{17}}{2*1}=\frac{15+\sqrt{17}}{2} $
| 9=4x-7(x+3) | | 12x-31=180 | | y=29-2 | | 3x+1=17+x=90 | | 7=29-2x | | 2c^2-9c+7=0 | | -4=q8-19 | | 14x^2-28x+20=0 | | 12y=3y+36 | | t÷3=7;21 | | 2p^2-9p+7=0 | | t÷3=7;31 | | 8x-5=11-3x | | 3x+4x=4x=36 | | 4x-3-61=90 | | 5x=20;100 | | 3x+20.5=180 | | 4123x+23x-2319x=34x(23x)-32 | | 1/8(5d+4)=3/4 | | 6+10/x=x+9 | | u-7.98=4.16 | | d−-57=63 | | 2x+2x+84+100=360 | | (5x-29)+(4x+1)=180 | | 3(u+5=2u-4+u | | 7-6/a=9 | | 3x+90+60+150=360 | | -5x+-15=30 | | 8+(b)/(-4)=5 | | 10x+3x+5=10 | | 63=16y-9y | | v-9.9=4.51 |